An Ostrowski type inequality for convex functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS

In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.

متن کامل

An inequality related to $eta$-convex functions (II)

Using the notion of eta-convex functions as generalization of convex functions, we estimate the difference between the middle and right terms in Hermite-Hadamard-Fejer inequality for differentiable mappings. Also as an application we give an error estimate for midpoint formula.

متن کامل

An inequality for monotonic functions generalizing Ostrowski and related results

In this paper we establish a generalisation of the Ostrowski inequality for monotonic functions that also includes various recent results and apply it for quadrature formulae in Numerical Integration.

متن کامل

Some Companions of an Ostrowski-like Type Inequality for Twice Differentiable Functions

Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this article, we establish some companions of an Ostrowski-like type inequality for functions whose second derivatives in absolute value are convex and concave.

متن کامل

Ostrowski type inequalities for functions whose derivatives are preinvex

In this paper‎, ‎making use of a new identity‎, ‎we establish new‎ ‎inequalities of Ostrowski type for the class of preinvex functions and‎ ‎gave some midpoint type inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publikacije Elektrotehni?kog fakulteta - serija: matematika

سال: 2005

ISSN: 0353-8893

DOI: 10.2298/petf0516012d